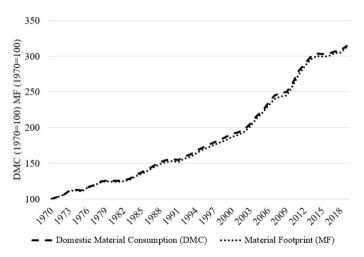


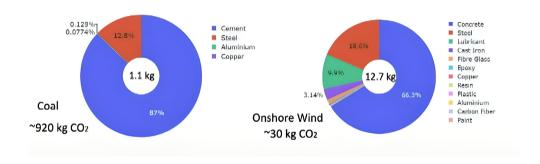
Materials for the Green Transition


X Annual Conference on the Global Economy

Sedat Alatas

salatas@hse.ru https://www.hse.ru/en/org/persons/766712791

Source: Zepf et al. (2014)



Source: Global Material Flows Database (2022)

The Move from Energy to Materials

• To deliver 1 MWh of electricity, we need the following materials for power plants

Source: Barron et al. (2022)

• If the 20th century energy goal was about access to the oil and gas, the 21st century will be about the access to materials.

Why are materials important?

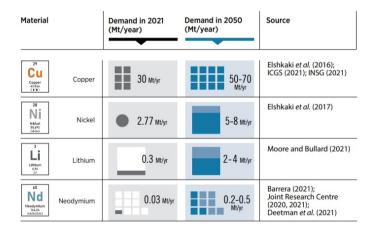
1. Economically vital

- Tungsten for smartphones, gallium for many light-emitting diodes (LEDs), copper for electronics, and silicon metal for semiconductors
- For example, 50 different metals in different quantities are needed to produce a standard smartphone (EC, 2018)

2. Low-carbon technologies

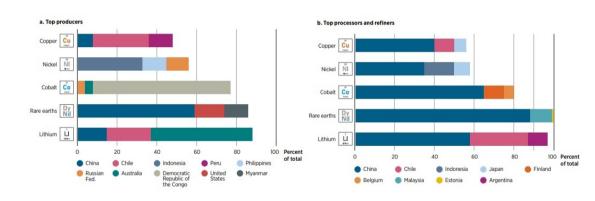
- Solar panels, wind turbines, electric vehicles, batteries, carbon capture and storage
- Rare earth element neodymium for wind turbine magnets
- Copper used for EV production is about 4 times higher than a standard ICE.
- The PV systems and wind power plants require 11-40 times more copper and 6-14 times more iron.

Global Demand for Materials is Expected to Grow

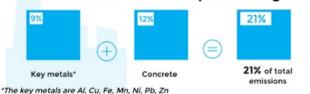

Source: OECD (2019)

 Under the sustainable development scenario, IEA (2022) projects that demand for lithium, cobalt, and nickel employed in clean technologies will increase by more than 60% by 2040.

Growing Demand for CRMs


Actual (2021) and Projected (2050) Demand under IRENA's 1.5°C Scenario

Source: IRENA (2022)


Risks to supplies of critical materials

Source: IRENA (2022)

Greenhouse gas emissions in 2060 from materials extraction and processing

Source: OECD (2019)

The Environmental Effect of Materials is Overlooked

Period		Carbon Intensity of Energy														Carbon Intensity of Material																							
1990-1995	4				15																					1	16								3				
	BRA	IDN	AUS	CHIN	IRN	POL	MEX	ZAF	ONI	SAU	ITA	TUR	KOR	CAN	GBR	Ndf	DEU	RUS	USA	Ndf	ONI	ITA	ZAF	BRA	AUS	KOR	RUS	CAN	POL	MEX	IDN	SAU	GBR	IRN	TUR	USA	DEU	CHIN	
1995-2000				7								12											12							7			7						
	USA	CAN	MEX	TUR	AUS	IDN	BRA	ZAF	IRN	SAU	JPN	QNI	ITA	POL	GBR	KOR	DEU	RUS	CHIN	KOR	ON	JPN	IDN	IRN	RUS	BRA	TUR	SAU	GBR	AUS	CAN	ZAF	MEX	ITA	CHIN	POL	DEU	USA	
2000-2005					1	0									9										13									(6				
	CHIN	JPN	USA	ITA	IND	ZAF	IDN	MEX	GBR	AUS	CAN	BRA	POL	TUR	IRN	KOR	DEU	SAU	RUS	CHIN	DEU	JPN	IND	KOR	ITA	AUS	ZAF	GBR	IRN	MEX	CAN	POL	TUR	BRA	IDN	SAU	RUS	USA	
2005-2010		1	4			15									12 7																								
	IDN	IND	KOR	ZAF	SAU	GBR	AUS	CAN	IRN	TUR	MEX	BRA	POL	DEU	Mdf	RUS	ITA	USA	CHIN	USA	ZAF	IND	IDN	GBR	RUS	KOR	IRN	AUS	JPN	ITA	MEX	BRA	SAU	POL	TUR	DEU	CAN	CHN	
2010-2015									13									5								1-				4									
	Ndf	IND	BRA	IDN	SAU	RUS	MEX	ZAF	TUR	DEU	KOR	POL	ITA	AUS	CAN	IKN	GBR	USA	CHIN	IND	IRN	ITA	BRA	SAU	Ndf	ZAF	DEU	AUS	POL	KOR	TUR	MEX	CAN	IDN	GBR	RUS	USA	CHIN	
2015-2019		2									17									8				8									11						
	IDN	ZAF	TUR	SAU	CAN	MEX	ITA	POL	KOR	AUS	IRN	GBR	RUS	Ndf	DEU	BRA	IND	USA	CHIN	CHIN	RUS	SAU	IDN	IRN	IND	ZAF	ITA	TUR	POL	KOR	CAN	MEX	Ndf	AUS	BRA	DEU	GBR	USA	
Whole		4										15											8										11						
	Ndf	IDN	ZAF	MEX	ONI	BRA	AUS	CAN	TUR	SAU	POL	IRN	ITA	KOR	GBR	DEU	RUS	CHIN	USA	QNI	Ndf	IRN	ZAF	KOR	NOI	ITA	AUS	SAU	BRA	MEX	TUR	POL	CAN	GBR	RUS	USA	DEU	CHIN	

Source: Akdogan et al. (2022)